Physics and chemistry of exoplanet and brown dwarf atmospheres

Two decades of exoplanet atmospheric characterization

- Exoplanet atmospheric observations are now done routinely
- Observations revealed a great diversity of atmospheres
- Plenty molecules/atoms detected (H₂O, CO, CH₄, NH₃, HCN, CO₂, C₂H₂, H, He, Na, K, Cr, V, Fe, FeH, TiO, VO, C¹³O)
- JWST has opened a new era for the characterization of exoplanetary atmospheres

		Properties		Dute		loss.				Alkalis			Rocks				heatope		
	Planet name	Test (IQ	*	*	ite	H ₀ D	00	ON,	HON	-	*	u	f.	100	Ce	*	Cr	*00	
	H0346	4048	2.06	-									11	941	1				
Pranating planets	WASP-306	2781	2.1			L	L						H		M				
	WASP-188	2641	1.00										#	L		L	L.		
	WASP-1215	2359	1.18	ж		M				- 11		10	11	H	M.	L	0		
	KELT-206	2255	3.38	H		L.				M			16	L	M				
	MASP-76b	2162	0.02	18		L				H		4.	*	L		L	L		
	HAS-P-805	1801	0.58	1	1	1.													
	WHEP-TIME	1741	2.29			16	1											1.5	
	MASP-ITE	1696	0.78	110		L				t									
	H0000458 b	1476	0.73	L	· L	14	94	L	t.	c				0					
	WASP-127b	1401	0.18			- 10			-	H	1	1	-						
	X0-05	1967	0.566								40								
	HAT-P-TD	1989	9.525			1				L									
	WASP-62 9-	1298	0.46	L		L				94.	Ł								
	WASP-MILE	1200	0.48			L				L									
	IND HERTSON	1192	1.13		- 10	16	81		L	H.	· C								
	WASP-306	1106	6.26			L			-	J.									
	WASP-60	1093	10.0			1.				31									
	WASP-666	1000	6.29		4	L				H									
	HATP-IZE	967	621			4				L									
	HATP-III	848	6.20		4	4.													
	HAT-P-11b	829	0.084		M	1.													
	WASP-1075	739	0.12		10	4				Confidence level:									
	0./0470b	604	0.043		1	1.0				High observed by at least 2 instruments									
2	Tau Bootta b	1826	5.84			0	96			Medium stoomed by one instrument multiple times									
	HD1790486	1962	0.00			lat.	L			Low observed once by one redrument									
4	S1Peg tr	1266	5.46			16	N.			Gur	Gormoveniel								
-	HD 102195b	1053	0.46	1															
Directly	OG Lapin	-2650	29			L	L.												
	Beta Pictoria b	~1774	10.0			14,	H												
	TYC 8000-750-19	-1700	14			L	10											1.	
	HINETON	-1100	8.1			10	90.1	0											
	HISTORY	-900	5.8			L	1	.0											
	On Endwert	-760	81			10		*1											

Guillot et al. 2022

Main science questions for the coming decade

1) Which physical/chemical processes shape exoplanet and BD atmospheres?

Madhusudhan 2019

- > What is the thermal structure of exoplanetary atmospheres and BD?
- ➤ Where does non-equilibrium chemistry play an important role?
- > How clouds/hazes form and vary (spatially and temporally)?

Main science questions for the coming decade

2) Can we constrain planetary formation/evolution from the atmospheric composition?

Link between atmospheric metallicity and planetary mass

Link between C/O and distance to the host star

Comparison brown dwarfs vs imaged giant planets

Imaged planets are young ⇒ low surface gravity

The LT transition for BD and young giant exoplanets

Imaged planets are young ⇒ low surface gravity

Young giant planets are red with a delayed L-T transition

The LT transition for BD and young giant exoplanets

Imaged planets are young ⇒ low surface gravity

Young giant planets are red with a delayed L-T transition

The LT transition for BD and young giant exoplanets

Explanations by 1D models: clouds or fingering convection

Model with fingering convection (ATMO)

Observation of variability and cloud cover

Inhomogeneous cloud cover of Luhman 16A by doppler imaging

Apai et al. 2013

Crossfield et al. 2014

3D modelling of cloud dynamics

3D simulations of L-T dwarfs with silicates clouds (P=5h, log(g)=5)

Teinturier, Charnay et al., submitted

> Preferential cloud formation at low latitudes reducing thermal flux

3D modelling of cloud dynamics

Teinturier, Charnay et al., submitted

- Cloud radiative effects trigger convection maintaining a thick cloud layer
- > This cloud feedback induces a sharp LT transition

3D modelling of cloud dynamics

- > Formation of a prograde equatorial jet
- \triangleright Wind speed compatible with measurements of 2MASS J10475385 (650 \pm 300 m/s, Allers et al. 2020)

3D modelling of cloud dynamics

Teinturier, Charnay et al., submitted

- Maximal variability at low latitudes and at the LT transition
- Compatible with measurements (*Vos et al. 2017, 2018*)
- Variability could be searched on YGPs (potentially higher than on BD) in particular with GRAVITY

Silicate absorption feature

Silicate absorption feature

JWST-MIRI spectrum of VHS 1256 b

Miles et al. 2022

- ➤ Silicate features not systematically present on L-type objects
 → Detached upper cloud layer ?
- Difficulty for 1D models to reproduce the silicate band at 10 μm
- Could it be detected by MATISSE in N band?

Petrus et al., submitted

Chemical disequilibrium

Lesson from observations of YGPs

Mukherjee et al. 2024

Chemical disequilibrium by vertical mixing is a key process controlling the chemical composition of exoplanetary atmospheres

Chemical disequilibrium

Lesson from observations of transiting exoplanets

The « missing methane problem » for transiting exoplanets with HST

JWST spectrum of K2-18 b dominated by CH₄ and CO₂

Madhusudhan et al. 2023

- HST not efficient to detect CH₄
- High intrinsic temperature for some planets
- → Tidal heating or ohmic dissipation?

The wealth of L and M bands

MATISSE could probe:

- \triangleright Chemical disequilibrium by measuring both CO (4.7 µm) and CH₄ (3.3 µm)
- \triangleright PH₃ (4.2 μ m) and P chemistry
- \triangleright CO₂ (4.3 µm) and atmospheric metallicity

Breaking the degeneracy between metallicity and chemical disequilibrium from NIRCam

Franson et al. 2024

- > MATISSE observations can distinguish a high metallicity from a strong disequilibrium by probing CO at 4.7 μm
- > MATISSE can observe planets with lower angular separation than NIRCam

Filling the SED with multi-intrument observations

Ravet et al. in prep (see also Mathis Houllé talk)

MATISSE observations help to constrain some parameters (i.e. solar C/O ratio)

Take-home messages

- > We are now in the golden age of exoplanet atmospheres!
- > The physics and chemistry of BDs and YGPs is similar, the main difference is the gravity
- > 3D simulations show the importance of cloud radiative effects on the dynamics, variability and LT transition
- > Chemical disequilibrium is a major process controlling chemical composition of BD and YGP
- **➤** MATISSE could probe:
- Chemical disequilibrium by measuring CO (4.7 μ m) and CH₄ (3.3 μ m)
- Potentially PH₃ (4.2 μ m) and CO₂ (4.3 μ m)
- Silicate cloud feature (10 μm)
- Emission continuum to break degeneracies in atmospheric retrieval
- Exoplanets at lower angular separation than JWST-NIRCam/MIRI

Complementarity with MIRI-MRS

Simulation of molecular mapping for GJ504 b with JWST-MIRI-MRS (cross-correlation of observations with model spectra)

« Cold » planets (e.g. GJ 504 b) are ideal for molecular mapping Proposal on GJ 504 b (PI: P. Patatis, co-PI: M. Mâlin)

Atmospheres as a probe of planetary formation: effect of snowlines on C/O

Öberg al. (2011)

Mousis al. (2018)

Atmospheres as a probe of planetary formation: effect of snowlines on C/O

Metallicity = fraction of heavy elements (heavier than H and He) For Solar System atmospheres, metallicity \approx [C]/[C]_{solar} For exoplanetary atmospheres, metallicity \approx [O]/[O]_{solar}

