

ExoMATISSE

• High S/N obtained on β Pic b in 36 min

ExoMATISSE

- Observed: β Pic bc, HR 8799 e (with MACAO)
- Programmed: PDS 70 bc(d?)
- Detection limits estimation

Technical improvements: wavefront control

- GPAO
 - ongoing commissioning
 - more planet flux, less stellar contamination
 - SNR x2-3 in *L*?

Technical improvements: wavefront control

- GPAO
 - ongoing commissioning
 - more planet flux, less stellar contamination
 - SNR x2-3 in *L*?
- Dark hole (speckle nulling)
 - ongoing implementation on GRAVITY
 - to be implemented on MATISSE
 - x10 in contrast limit?

Technical improvements: observations & reduction

- 2- or 3-telescope mode
 - shut non-constraining baselines
 - reduce background noise on detector

Technical improvements: observations & reduction

- 2- or 3-telescope mode
 - shut non-constraining baselines
 - reduce background noise on detector

- Apodization (J. Scigliuto's work)
 - apodize the fringe peak integration to reduce background noise

Technical improvements: observations & reduction

- 2- or 3-telescope mode
 - shut non-constraining baselines
 - reduce background noise on detector

- Apodization (J. Scigliuto's work)
 - apodize the fringe peak integration to reduce background noise
- Better covariance estimate (P. Priolet's talk)
 - could help modeling fainter noisier targets

Science cases

- Cold/warm planets (< 1200 K)
 - molecular lines of CO, CH₄, CO₂, PH₃

Sorahana+ 2012, isolated brown dwarfs

Charnay+18, ExoREM atmospheric models

Science cases

- Cold/warm planets (< 1200 K)
 - molecular lines of CO, CH₄, CO₂, PH₃
- Protoplanets
 - circumplanetary disk emission in the mid-infrared
 - Protoplanetary systems found at > 100 pc (Taurus, Lupus...)

Christiaens+24
PDS 70 b spectrum

- Thousands of exoplanet detections expected from Gaia DR4 (Perryman+14)
- Hundreds should be accessible to GRAVITY and MATISSE

- Thousands of exoplanet detections expected from Gaia DR4 (Perryman+14)
- Hundreds should be accessible to GRAVITY and MATISSE
- Order of magnitude more planets than today
 - largest exoplanet spectroscopic survey!
 - strong constraints on planetary system architectures at snow line levels (0.1 – 10 au)
 - strong constraints on substellar atmospheres, from Neptunes to brown dwarfs
 - bridge with radial velocities and transits

GRAVITY+ White Paper

- Mass-age-luminosity degeneracy in exoplanet imaging
 - masses derived from luminosities through evolution models
 - large uncertainty on the post-formation luminosity hypothesis in these models
 - produces large uncertainty on the planet mass

Spiegel & Burrows (2012)

- Mass-age-luminosity degeneracy in exoplanet imaging
- GRAVITY, MATISSE (+ upgraded PIONIER?) can solve it!
 - provide dynamical masses independent of models
 - provide good luminosity estimates: cover emission peaks from 1500 K (1.9 μm) to 600 K (4.8 μm)
- Opportunity for a large program targeting Gaia candidates with all VLTI instruments

Pourré+ 2024

