Evidence for an accretion bridge in the DX Cha circumbinary system

Tímea Juhász

junior research fellow, HUN-REN Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklós Astronomical Institute

Co-workers: József Varga, Péter Ábrahám, Ágnes Kóspál, Lei Chen

MATISSE Science Meeting, 2024.11.07.

Introduction: Herbig Ae stars

- young objects (< 10 Myr)</p>
- A spectral type
- ► mass: 1.5–3 M_☉
- circumstellar disk
- disk evolution are related to the central star
- ▶ binary stars → more complexity
- ightharpoonup inner disk region ightharpoonup size scale of a few au
- significant radiation in infrared
- $lackbox{0.01 arcsec resolution is required}
 ightarrow infrared interferometry$

DX Cha

- spectroscopic binary
- Herbig A4V and K3
- ▶ 20 days period (Böhm et al. (2004))
- 0.22 au semi-major axis
- ► M1 = 2.2 ± 0.2 M_☉, M2 = 1.4 ± 0.3 M_☉ (Garcia et al. (2013))
- DX Cha in group II (Meeus et al. (2001))
- ightharpoonup d = 106.5 \pm 0.5 pc (Bailer-Jones et al. (2021))
- $A_V = 0.31 \text{ mag (Gontcharov & Mosenkov (2018))}$
- ▶ L = $47 \pm 11 L_{\odot}$ (Varga et al. (2018))

DX Cha

- Dunhill et al. (2015): smoothed particle hydrodynamics (SPH) simulations
 - cavity and accretion bridges
 - precession period is approximately 40 years
 - ▶ for 2 years \sim 18 degrees, and for 4 years \sim 36 degrees...
 - this precession effect will be testable with the VLTI

Our goals:

- study the disk structure within 10 milliarcseconds
- check the presence of the cavity based on the MATISSE measurements
- detect changes over time
- possible changes: disk origin? stellar origin?
- explanation for the asymmetry experienced in the closure phases

MATISSE data

- ► GTO programmes 0104.C-0782(D), 106.21Q8.003, 108.22HB.001 and 110.23X2.002
- reduced with Data Reduction Software package (DRS) measurements
- we used the L band data
- N band data: separate study?

Table 1: Overview of VLTI/MATISSE observations of DX Cha used in our work

Target						Calibrator			
Instrument mode	Date and time	Seeing	τ_0	Stations	Configuration	Name	LDD	Time	
	(UTC)	()	(ms)				(mas)	(UTC)	
stand-alone	2020-03-22T05:54	0.54	7.25	K0-G2-D0-J3	Medium (AT)	HD 105340	2.22	05:29	
GRA4MAT	2021-03-11T04:45	0.68	6.49	K0-G2-D0-J3	Medium (AT)	HD 120404	2.94	04:18	
stand-alone	2022-01-23T07:37	0.49	10.40	U1-U2-U3-U4	UT	HD 92682	2.12	07:04	
GRA4MAT	2023-01-18T06:15	0.76	6.48	A0-B2-D0-C1	Small (AT)	HD 92305	4.61	05:46	

MATISSE data

Figure 1: The calibrated MATISSE L band data sets from 2020 and 2021

MATISSE data

Figure 2: The calibrated MATISSE L band data sets from 2022 and 2023

SED analysis

- $ightharpoonup T_1=8250$ K and $T_2=4800$ K (Cowley et al. (2013)) ightarrow PHOENIX synthetic spectra
- radii are not precisely known
- ▶ Cowley et al. (2013): flux ratio on 557.6 nanometers = 1/9.9
- scaling of the spectra
- checking based on photometric data

Result: flux ratio on the L band disk: primary star: secondary star = 85:9:6

SED analysis

Figure 3: SED of DX Cha. The grey band shows the wavelength range we modeled.

Modelling

- Oimodeler modelling software
- we built a customized model:
 - disk: azimuthally modulated smoothed ring with a fitted:
 - d (diameter)
 - FWHM (full width at half maximum)
 - A_{mod1}, A_{mod2}, A_{mod3} (amplitude of the azimuthal modulation in the time of the three fitted measurements)
 - Φ_{mod1}, Φ_{mod2}, Φ_{mod3} (position angle of the azimuthal modulation in the time of the three fitted measurements)
 - DX Cha system is almost face on: pa = 0 and the elong = 1
 - binary star: two point sources on Keplerian orbit with a fitted:
 - $ightharpoonup \Omega$ (longitude of the ascending node)
 - $ightharpoonup t_0$ (time of periastron passage)
 - other orbital elements were fixed parameters (based on Böhm et al. (2004))
 - flux ratios of the model elements were also fixed parameters (SED study)

Modelling

- ► MCMC algorithm (emcee ensemble sampler, Foreman-Mackey et al. (2013))
- ▶ 50000 steps with walkers 26
- ightharpoonup best-fit values ightharpoonup the first 25000 steps was discarded

Figure 4: Model fitting of the 2020 and 2023 data. $\chi^2_{red} = 0.62$

Figure 5: Model fitting of the 2021 and 2023 data. $\chi^2_{red} = 0.76$

Figure 6: Model fitting of the 2022 and 2023 data. $\chi^2_{red} = 2.38$

Table 2: The best-fit parameters of the modeling, with a $\chi^2_{red} = 1.19$. Position angles of the modulations are measured east of north.

d	FWHM	A_{mod1}	A_{mod2}	A_{mod3}	Φ_{mod1}	Φ_{mod2}	Φ_{mod3}	Ω	t_0
[mas]	[mas]	[°]	[°]	[°]	[°]	[°]	[°]	[°]	[MJD]
$8.05^{+0.38}_{-0.44}$	$1.28^{+0.34}_{-0.55}$	$0.73^{+0.45}_{-0.31}$	$0.63^{+0.32}_{-0.25}$	$0.79^{+0.27}_{-0.20}$	97.87 ^{+45.36} -61.17	239.11+72.52	273.64+39.85	319.81 ^{+254.51} _{-135.06}	58921.22 ^{+4.46} _{-3.54}

Figure 7: Model images of the 2020, 2021 and 2022 epochs. The primary is marked by a blue star symbol, the secondary by a red star symbol.

Discussion

- the assumed Keplerian orbit agrees with the data
- $ightharpoonup A_{mod1}, A_{mod2}, A_{mod3}
 ightharpoonup$ significant asymmetry in the innermost disk region
- ightharpoonup temporary changes in the ring asymmetry ightharpoonup periodicity is unknown from the data
- narrow ring in the L band with a diameter of 8 mas
- ightharpoonup previous hydrodynamic studies ightarrow larger inner cavity (Dunhill et al. (2015))
- accretion bridge?

Discussion

Figure 8: Schematic representations of models of DX Cha. **Left:** our model, showing the *L*-band brightness distribution. **Right:** sketch of the surface density map from the SPH simulation by Dunhill et al. (2015)

Discussion

- asymmetry: stellar or disk origin?
- test models:
 - symmetric disk around the binary star
 - asymmetric disk without point sources
 - asymmetric disk with one, central point source (with the brightness of the binary star)
- we experienced large closure phases in all tests
- it cannot be determined whether the binary star or the disk is more significant
 - epoch 2020: disk asymmetry determines the closure phases
 - other epochs: the signal of the binary star is also important

Evidence for an accretion bridge in the DX Cha circumbinary system from VLTI/MATISSE observations*

```
Timea Jeriéze (**). <sup>13,2</sup> Júcsep Varga (**). <sup>13</sup> Fetta Árbritá (**). <sup>13,2</sup> Acris Kóspá (**). <sup>13,2</sup> Foteni Lycon (**). <sup>13</sup> Lei Cirin (**). <sup>13</sup> Artha Mósr (**). <sup>13</sup> Fedenson Cruz-Sásze de Meira (**). <sup>13</sup> Brisso Lorez (**). <sup>13</sup> Alexis Matter (**). <sup>13</sup> Roy van Boiere (**). <sup>13</sup> Michiel Horsehhdig (**). <sup>14</sup> Marganya Melenda (**). <sup>13</sup> Arb. Clarrel (**). <sup>13</sup> Paul Boily (**). <sup>13</sup> Paul Bo
```

¹Konkoly Observatory, HUN-REN Research Centre for Astronomy and Earth Sciences, Konkoly-Thege Miklós út 15-17, 1121 Budapest, Hungary ²Institute of Physics and Astronomy, ELTE Edwiss Lordan University, Patmány Péter s'édny 1/h, 1117 Budapest, Hungary ²CSFN, MIT, Centre of Excellence, Konkoly-Thege Miklós út 15-17, 1-121 Budapest, Hungary

⁴Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, UT3-PS, CNRS, CNES, 9 av. du Colonel Roche, 31028 Toulouse Cedex 4, France

⁵ Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, France
⁶Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany

⁷Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands ⁸Amon Pannekoek Institute for Astronomy, University of Amsterdam, the Netherlands ⁹Univ. Grenoble Altres. CWRS, IPAG. 38000 Grenoble, France

¹⁰NASA Goddard Space Flight Center, Astrophysics Division, Greenbelt, MD 20771, USA

¹¹Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121, Bonn, Germany
¹²Institute of Theoretical Physics and Astrophysics, University of Kiel, Leibnizstr. 15, 24118 Kiel, Germany

ABSTRACT

DX Cha (HI) 104237) is a spectroscopic binary consisting of a Herbig A7.5Ve-A8Ve primary star and a K3-type companion. Here we report on new 3.55 µm interferometric observations of this source with the Multi Aperture Mid-Infrared Spectroscopic Experiment (MATISSE) at the Very Large Telescope Interferometer (VLTI). To model the four MATISSE observations obtained between 2020 and 2023, we constructed a time-dependent interferometric model of the system, using the of iondeler software. The model consists of an asymmetric ring and two point sources on a Keplerian orbit. Our best-fit model consists of a circumbinary ring with a diameter of 0.86 au (8.05 mas), featuring a strong azimuthal asymmetry. We found that the position angle of the asymmetry changes tens of degrees between the MATISSE epochs. The ring is relatively narrow, with a full width at half maximum (FWHM) of ~0.14 au (1.31 mas). The presence of circumstellar dust emission so close to the binary is unexpected, as previous hydrodynamic simulations predicted an inner disk cavity with a diameter of ~4 au (~37.5 mas). Thus, we argue that the narrow envelope of material we detected is probably not a gravitationally stable circumbinary ring, but may be part of tidal accretion streamers channeling material from the inner edge of the disk toward the stars.

