The complex inner disk of the Herbig Ae star HD 100453 with VLTI/MATISSE

Luna van Haastere & MATISSE GTO YSO-team

 4^{th} year PhD student working with Michiel Hogerheijde and Carsten Dominik Leiden Observatory, NL MATISSE Days, Nice | Nov. 2024

Schematic protoplanetary disk

Herbig Ae HD 100453

Transition disk with binary interaction

Parameter	Value
HD 100453	
Spectral Type	A9 - F0
Mass	$1.6 \pm 0.05 \; \mathrm{M}_{\odot}$
Teff	$7250 \pm 125 \text{ K}$
Age	6.5 - 19.2 Myr
Distance	103.61 ± 0.24 pc
Luminosity	$6.2 \pm 0.14 \mathrm{L}_{\odot}$
Companion	
Spectral Type	M4.0V - M4.5V
Mass	$0.18 \pm 0.03 \mathrm{M}_{\odot}$
Age	8 - 12 Myr
Projected separation	1.05", ~109 AU
110jected separation	1.05 , 107 10

HD 100453: Protoplanetary disk with binary interaction

Infrared: scattered surface light

mm: thermal emission from large grains

HD 100453: Protoplanetary disk with binary interaction

Infrared: scattered surface light

thermal emission from large grains

HD 100453: Misaligned inner disk causing shadow lane

Infrared:

scattered surface light

mama'

thermal emission from large grains

HD 100453: Misaligned inner disk causing shadow lane

Infrared:

scattered surface light

mim

thermal emission from large grains

PIONIER:

Thermal hot dust (1.5 – 1.8 micron)

GRAVITY

Thermal hot dust (2 – 2.5 micron)

Inc
$$\approx 46^{\circ} - 48^{\circ}$$

$$PA \approx 80^{\circ} - 83^{\circ}$$

PIONIER:

Thermal hot dust (1.5 – 1.8 micron)

GRAVITY:

Thermal hot dust (2 – 2.5 micron)

- Skw $\approx 14\%$
- SkwPA $\approx 254^{\circ} \pm 4^{\circ}$

■ Inc $\approx 46^{\circ} - 48^{\circ}$ PA $\approx 80^{\circ} - 83^{\circ}$

Schematic view HD 100453

MATISSE observations (2019-2023) = 13 AT datasets

HD 100453 observations (2019 - 2023) - MATISSE

- 3.4 3.8 micron
- Big closure phase signal in multiple datasets!

Parametric modelling

- Oimodeler frame work (A. Meilland+ 2024)
 https://oimodeler.readthedocs.io/
- Similar methodology Lazareff+2017 and Bohn+2022.
 Best model → Pseudo-Lorentzian kernel smoothed ring
 First order azimuthal modulation
 - + Stellar & Background terms

Visibilities show good agreement with previous work

Inc
$$\approx 49^{\circ} \pm 10^{\circ}$$

PA $\approx 83^{\circ} \pm 20$

Multi-epoch fitting: does the asymmetry move?

Asymmetry seems stationary over our observations.

If Keplerian motion (~38d period) [2021b] \approx [2021a] \pm 80 °

Data points towards asymmetry being stationary (although we cannot strongly exclude sub-Keplerian rotating structure).

Find an asymmetry in ~stationary in eastern direction (!)

Bohn+ et al. 2022

Reconstruction (Sparco)

Similarly stationary in GRAVITY observations

Chromaticity in closure phases MATISSE & GRAVITY

Chromaticity in closure phases MATISSE & GRAVITY

Dotted ...

Dashed ---

→ 0.5 AU

Refresher: Common asymmetry

Dullemond & Monnier 2010

Gravity Col. 2024

Planetary companion driven eccentricity?

Ataiee et al. 2013

Conclusions

- □ MATISSE L-band visibilities agrees well with previous work with H- and K-band w.r.t disk misalignment.
- After a thorough investigation of the data and reduction methods, we conclude that the observed chromatic 'mismatch' in closure phases between MATISSE and GRAVITY for HD 100453 seems a physical effect, not a result of errors in reduction or calibration.
- □ We detect an asymmetric dust feature in the L-band along the projected semi-major axis in the North-East direction, which contradicts the GRAVITY reported value by ~160 degrees. Temporal analysis of the data is inconclusive, but suggests that the asymmetry remains stationary over our few year observational timeline, hinting towards an eccentric inner disk.
- □ The discrepancy in the recovered skwPA is likely due to simplistic model assumptions, indicating a more complex chromatic asymmetric structure in the inner disk.
- ☐ An imaging campaign using simultaneous GRAVITY + MATISSE AT Medium/Large would be highly beneficial.